派瑞林Parylene涂层不仅电性能和防护性能好,而且生物相溶性也好,它已通过美国FDA论证,满足美国药典生物材料VI类标准,被列为是一种可以在体内长期植入使用的生物材料。
有些具有需小心保护的内部电子元件(植入式或外部),由于这些电子元件体积微小,没有足够的重量进行沉降、喷涂或涂刷,一些微小的装置还会受到气隙、厚度不均等因素的不良影响,因此无法采用传统的防护涂层。Parylene真空镀膜以其良好的耐腐蚀、耐,、 低阻滞性、低摩擦系数及生物相容性,在国际临床运用的生物的表面涂层上,将逐步取代TiNi(镍钛)合金涂层而被列为材料。如骨钉、探针、针头、临时手术器械、导尿管、制动器及耳蜗植入器,心脏起搏器、脑电极、植入式传感器、射频、血液分析传感器和高频手术刀等微型电子。
建筑玻璃有透光和隔热两个基本功能。普通玻璃能透过绝大部分太阳光辐射能量,这对采光和吸收太阳光线的能量十分有利。而对于空间红外辐射,普通玻璃虽能阻止室内的热量直接透过室外,但热量被玻璃吸收后的二次散热也会造成很大的损失。随着经济的发展,普通玻璃已越来越不能满足人们的要求。而阳光控制膜和低辐射膜正好能弥补了普通玻璃在这一方面的不足。
生活中我们会看到金黄色的、钴铜色的、黑色的等七杂八色的钻头、铣刀、模具等,这些就是经过派瑞林镀膜技术加工后的涂层工具。金黄色的是在刀具上涂镀了TiN、ZrN 涂层。TiN是代应用广泛的硬质层材料。黑色的是在切削工具上涂了TiC、CrN涂层。钴铜色的是在刀具上镀涂了TiALN涂层。
水的表面张力远大于油的表面张力,所以织物获得拒油的性能后自然也就有了拒水的性能。纳米材料的加入,通过粘合剂的作用与纤维结合,由于纳米粒子的小尺寸效应,表面和界面效应,纳米粒子表面的原子存在大量的表面缺陷和许多悬挂键,具有很高的化学活性,纳米粒子高度分散在纱线之间、纤维之间和纤维表面,它们与有机氟树脂、交联剂、粘合剂在纤维表面形成一层很薄而致密的膜,阻止了油污的进一步渗透,大大提高了拒水、拒油和防污性能,可以降低纤维表面的电荷,从而降低了污物通过电荷间的静电吸附到纤维上的机会,增强了防污效果。 虽然派拉伦涂层通常很薄,但它们的沉积速度也相对较慢。派拉伦沉积很快的变体-派拉伦C-通常以每小时0.2密耳或5微米的速率沉积。这意味着75微米的涂层大约需要15个小时。派拉伦N和D沉积较慢。派拉伦(派瑞林涂层)纳米涂层的优势特点:派拉伦(派瑞林涂层)涂层的耐热性;熔点:从热可塑性角度看,通过派拉伦(派瑞林涂层)真空气镀膜技术,提升PCBA板超疏水疏油的功能。派拉伦(派瑞林涂层)涂层的耐热性:分解温度:温度变化使产品重量减少5%时候,皮膜开始分解,不同的温度领域引起的分解性质不一样的。以上信息由专业从事镀膜涂层的菱威纳米于2024/12/17 13:55:58发布
转载请注明来源:http://chaozhou.mf1288.com/lingwei2019-2826081160.html